3.2.71 \(\int \frac {(a x^2+b x^3)^{3/2}}{x^8} \, dx\)

Optimal. Leaf size=137 \[ -\frac {3 b^4 \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )}{64 a^{5/2}}+\frac {3 b^3 \sqrt {a x^2+b x^3}}{64 a^2 x^2}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}-\frac {b \sqrt {a x^2+b x^3}}{8 x^4} \]

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2020, 2025, 2008, 206} \begin {gather*} \frac {3 b^3 \sqrt {a x^2+b x^3}}{64 a^2 x^2}-\frac {3 b^4 \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )}{64 a^{5/2}}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*x^2 + b*x^3)^(3/2)/x^8,x]

[Out]

-(b*Sqrt[a*x^2 + b*x^3])/(8*x^4) - (b^2*Sqrt[a*x^2 + b*x^3])/(32*a*x^3) + (3*b^3*Sqrt[a*x^2 + b*x^3])/(64*a^2*
x^2) - (a*x^2 + b*x^3)^(3/2)/(4*x^7) - (3*b^4*ArcTanh[(Sqrt[a]*x)/Sqrt[a*x^2 + b*x^3]])/(64*a^(5/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2008

Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[2/(2 - n), Subst[Int[1/(1 - a*x^2), x], x, x/Sq
rt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\left (a x^2+b x^3\right )^{3/2}}{x^8} \, dx &=-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}+\frac {1}{8} (3 b) \int \frac {\sqrt {a x^2+b x^3}}{x^5} \, dx\\ &=-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}+\frac {1}{16} b^2 \int \frac {1}{x^2 \sqrt {a x^2+b x^3}} \, dx\\ &=-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}-\frac {\left (3 b^3\right ) \int \frac {1}{x \sqrt {a x^2+b x^3}} \, dx}{64 a}\\ &=-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}+\frac {3 b^3 \sqrt {a x^2+b x^3}}{64 a^2 x^2}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}+\frac {\left (3 b^4\right ) \int \frac {1}{\sqrt {a x^2+b x^3}} \, dx}{128 a^2}\\ &=-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}+\frac {3 b^3 \sqrt {a x^2+b x^3}}{64 a^2 x^2}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}-\frac {\left (3 b^4\right ) \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {x}{\sqrt {a x^2+b x^3}}\right )}{64 a^2}\\ &=-\frac {b \sqrt {a x^2+b x^3}}{8 x^4}-\frac {b^2 \sqrt {a x^2+b x^3}}{32 a x^3}+\frac {3 b^3 \sqrt {a x^2+b x^3}}{64 a^2 x^2}-\frac {\left (a x^2+b x^3\right )^{3/2}}{4 x^7}-\frac {3 b^4 \tanh ^{-1}\left (\frac {\sqrt {a} x}{\sqrt {a x^2+b x^3}}\right )}{64 a^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 42, normalized size = 0.31 \begin {gather*} -\frac {2 b^4 \left (x^2 (a+b x)\right )^{5/2} \, _2F_1\left (\frac {5}{2},5;\frac {7}{2};\frac {b x}{a}+1\right )}{5 a^5 x^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*x^2 + b*x^3)^(3/2)/x^8,x]

[Out]

(-2*b^4*(x^2*(a + b*x))^(5/2)*Hypergeometric2F1[5/2, 5, 7/2, 1 + (b*x)/a])/(5*a^5*x^5)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 16.00, size = 109, normalized size = 0.80 \begin {gather*} \frac {\left (x^2 (a+b x)\right )^{3/2} \left (\frac {\sqrt {a+b x} \left (3 a^3-11 a^2 (a+b x)-11 a (a+b x)^2+3 (a+b x)^3\right )}{64 a^2 x^4}-\frac {3 b^4 \tanh ^{-1}\left (\frac {\sqrt {a+b x}}{\sqrt {a}}\right )}{64 a^{5/2}}\right )}{x^3 (a+b x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*x^2 + b*x^3)^(3/2)/x^8,x]

[Out]

((x^2*(a + b*x))^(3/2)*((Sqrt[a + b*x]*(3*a^3 - 11*a^2*(a + b*x) - 11*a*(a + b*x)^2 + 3*(a + b*x)^3))/(64*a^2*
x^4) - (3*b^4*ArcTanh[Sqrt[a + b*x]/Sqrt[a]])/(64*a^(5/2))))/(x^3*(a + b*x)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 197, normalized size = 1.44 \begin {gather*} \left [\frac {3 \, \sqrt {a} b^{4} x^{5} \log \left (\frac {b x^{2} + 2 \, a x - 2 \, \sqrt {b x^{3} + a x^{2}} \sqrt {a}}{x^{2}}\right ) + 2 \, {\left (3 \, a b^{3} x^{3} - 2 \, a^{2} b^{2} x^{2} - 24 \, a^{3} b x - 16 \, a^{4}\right )} \sqrt {b x^{3} + a x^{2}}}{128 \, a^{3} x^{5}}, \frac {3 \, \sqrt {-a} b^{4} x^{5} \arctan \left (\frac {\sqrt {b x^{3} + a x^{2}} \sqrt {-a}}{a x}\right ) + {\left (3 \, a b^{3} x^{3} - 2 \, a^{2} b^{2} x^{2} - 24 \, a^{3} b x - 16 \, a^{4}\right )} \sqrt {b x^{3} + a x^{2}}}{64 \, a^{3} x^{5}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^8,x, algorithm="fricas")

[Out]

[1/128*(3*sqrt(a)*b^4*x^5*log((b*x^2 + 2*a*x - 2*sqrt(b*x^3 + a*x^2)*sqrt(a))/x^2) + 2*(3*a*b^3*x^3 - 2*a^2*b^
2*x^2 - 24*a^3*b*x - 16*a^4)*sqrt(b*x^3 + a*x^2))/(a^3*x^5), 1/64*(3*sqrt(-a)*b^4*x^5*arctan(sqrt(b*x^3 + a*x^
2)*sqrt(-a)/(a*x)) + (3*a*b^3*x^3 - 2*a^2*b^2*x^2 - 24*a^3*b*x - 16*a^4)*sqrt(b*x^3 + a*x^2))/(a^3*x^5)]

________________________________________________________________________________________

giac [A]  time = 0.24, size = 109, normalized size = 0.80 \begin {gather*} \frac {\frac {3 \, b^{5} \arctan \left (\frac {\sqrt {b x + a}}{\sqrt {-a}}\right ) \mathrm {sgn}\relax (x)}{\sqrt {-a} a^{2}} + \frac {3 \, {\left (b x + a\right )}^{\frac {7}{2}} b^{5} \mathrm {sgn}\relax (x) - 11 \, {\left (b x + a\right )}^{\frac {5}{2}} a b^{5} \mathrm {sgn}\relax (x) - 11 \, {\left (b x + a\right )}^{\frac {3}{2}} a^{2} b^{5} \mathrm {sgn}\relax (x) + 3 \, \sqrt {b x + a} a^{3} b^{5} \mathrm {sgn}\relax (x)}{a^{2} b^{4} x^{4}}}{64 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^8,x, algorithm="giac")

[Out]

1/64*(3*b^5*arctan(sqrt(b*x + a)/sqrt(-a))*sgn(x)/(sqrt(-a)*a^2) + (3*(b*x + a)^(7/2)*b^5*sgn(x) - 11*(b*x + a
)^(5/2)*a*b^5*sgn(x) - 11*(b*x + a)^(3/2)*a^2*b^5*sgn(x) + 3*sqrt(b*x + a)*a^3*b^5*sgn(x))/(a^2*b^4*x^4))/b

________________________________________________________________________________________

maple [A]  time = 0.05, size = 101, normalized size = 0.74 \begin {gather*} \frac {\left (b \,x^{3}+a \,x^{2}\right )^{\frac {3}{2}} \left (-3 a^{2} b^{4} x^{4} \arctanh \left (\frac {\sqrt {b x +a}}{\sqrt {a}}\right )+3 \sqrt {b x +a}\, a^{\frac {11}{2}}-11 \left (b x +a \right )^{\frac {3}{2}} a^{\frac {9}{2}}-11 \left (b x +a \right )^{\frac {5}{2}} a^{\frac {7}{2}}+3 \left (b x +a \right )^{\frac {7}{2}} a^{\frac {5}{2}}\right )}{64 \left (b x +a \right )^{\frac {3}{2}} a^{\frac {9}{2}} x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x^2)^(3/2)/x^8,x)

[Out]

1/64*(b*x^3+a*x^2)^(3/2)*(3*(b*x+a)^(7/2)*a^(5/2)-11*(b*x+a)^(5/2)*a^(7/2)-3*arctanh((b*x+a)^(1/2)/a^(1/2))*a^
2*x^4*b^4-11*(b*x+a)^(3/2)*a^(9/2)+3*(b*x+a)^(1/2)*a^(11/2))/x^7/(b*x+a)^(3/2)/a^(9/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (b x^{3} + a x^{2}\right )}^{\frac {3}{2}}}{x^{8}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x^2)^(3/2)/x^8,x, algorithm="maxima")

[Out]

integrate((b*x^3 + a*x^2)^(3/2)/x^8, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,x^3+a\,x^2\right )}^{3/2}}{x^8} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^2 + b*x^3)^(3/2)/x^8,x)

[Out]

int((a*x^2 + b*x^3)^(3/2)/x^8, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x^{2} \left (a + b x\right )\right )^{\frac {3}{2}}}{x^{8}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x**2)**(3/2)/x**8,x)

[Out]

Integral((x**2*(a + b*x))**(3/2)/x**8, x)

________________________________________________________________________________________